
Session F4C

4
th

 First Year Engineering Experience (FYEE) Conference August 9 – 10, 2012, Pittsburgh, PA

 F4C-1

Teaching MATLAB in First-year Engineering: A

GUI Tool Directed Approach

Craig S. Lent, Jay Brockman, Victoria Goodrich, Kerry Meyers
University of Notre Dame, lent@nd.edu, jbb@nd.edu, vfroude@nd.edu, kmeyers1@nd.edu

Abstract - We describe an approach to teaching

MATLAB that focuses on student-written computational

models with a graphical user interface (GUI). The

curriculum teaches the basics of programming but

emphasizes getting as soon as possible to GUI tool

development. Students learn a straightforward process

for constructing a computational model of a physical

system, and then attaching it to a GUI.

Index Terms – Programming, MATLAB, graphical user

interface, introductory engineering.

MATLAB GUI TOOLS

The MATLAB programming language has evolved to

include many powerful and convenient graphical and

analysis tools. It has become an important platform for

engineering and science education, as well as research.

MATLAB is a very valuable first programming language,

for beginning engineering students, and, for many, will be

the preferred language for most, if not all, of the

computational work they do.

An often-overlooked feature of MATLAB is the

GUIDE program (Graphical User Interface Development

Environment). Using GUIDE makes construction of GUI-

based tools straightforward. (GUI is pronounced “gooey”.)

Interface elements such as buttons, menus, editable text

objects, sliders, and plotting areas, can be arranged on a

panel using familiar drag-and-drop operations. GUIDE

automatically generates the code for the user interface; the

programmer has merely to fill in functionality at key points

to connect his or her code to the GUI tool. By templating

this process, it’s possible to take novice users quickly into

the realm of GUI tool development. This makes

programming both more appealing to students and more

useful in learning engineering. Interactive graphics allow

students to explore behavior that results from the underlying

physical model.

While computer programs can be used in many ways,

the emphasis here is on building computational models,

primarily of physical phenomena. [1] A physical system is

modeled first conceptually, using ideas such as momentum,

force, energy, reactions, fields, etc. These concepts are

expressed mathematically and applied to a particular class

of problem. Such a class might be, for example, projectile

motion, fluid flow in a pipe, tunneling between quantum

dots, signals in chained transmission lines, an electrical

oscillator circuit, or beams under load. Typically, the model

involves a set of parameters which describe the physical

system and a set of mathematical relations—systems of

equations, integrals, differential equations, eigensystems,

etc. The computational solution of the mathematical model

for a given set of parameters must be realized through a

computational algorithm—a step-by-step procedure for

calculating the desired quantities. The behavior of the model

is then usually visualized graphically, e.g., one or more

plots, bar graphs, or animations.

A GUI-tool consists of a (1) computational model of

the system, and (2) a graphical user interface that provides

a graphical representation of the model performance and lets

the user easily and naturally adjust the parameters of the

model and see the resulting change in behavior. Depcik and

Assanis reported that “the most important benefit of a GUI

is that it can post-process the results of the simulation

providing the user with instant feedback. This is especially

important when performing parametric studies where

variables are changed over a certain range. A visual

illustration of how results change as a function of various

variables, or parametric sweeps, reinforces the lessons

learned in the classroom.” [2]

The GUI tool approach was originally developed for

high school students at the 11
th

-grade level. It has been used

for more than six years at the three campuses of Trinity

School. All students at the school take a one-semester

MATLAB programming course and use the GUI tool

techniques in their subsequent mathematics and physics

courses.

Student learning is enhanced if the students themselves

build the GUI tools: construct the computational model,

implement the visualization of results, design and program

the GUI. Building the GUI tool is valuable for student

learning for several reasons.

(a) Insight into system behavior. Exploring model

behavior, by manipulating sliders, buttons,

checkboxes etc., helps to develop an intuitive

insight into the model behavior. Insight is the

primary goal. By running the computational model

many times with different inputs, the user, here the

student, can begin to see and understand the

characteristic behavior of physical system

represented by the model.

(b) Increased realism of models. With appropriate

algorithms, students can construct computational

models which are more realistic than the idealized

text-book behavior accessible with closed-form

algebraic solutions. For example, models of

ballistic motion can include aerodynamic drag,

Session F4C

4
th

 First Year Engineering Experience (FYEE) Conference August 9 – 10, 2012, Pittsburgh, PA

 F4C-2

wind, and other complications. This results in a

better match with reality. The gap between text-

book problems (baseballs hit into a vacuum) and

reality can otherwise leave students with an

unwarranted suspicion that physics never really

describes the physical world.

(c) Design experience. Particularly for engineering

students, the discipline of wrapping the model in a

form that someone else could use encourages a

design-oriented focus. For longer programs there is

a significant design element in how the

computational model behind the GUI is

decomposed into functions, and how objects and

data interact. Yet, even for short programs,

determining the layout and function of the user

interface presents an early opportunity for students

to engage in user-centered design.

(d) Familiarity. Students are accustomed to operating

computers through graphically driven tools. A

command line, text-based interface seems crude

and retrograde.

(e) Fun. Building and delivering a sophisticated

computational model that is operated through a

GUI interface is rewarding and makes the student’s

first experience with programming more enjoyable.

There is considerable literature that recognizes the

benefits of using GUI tools to enhance student learning in

engineering educational settings, for example in controls [3]

robotics[4], and numerical methods [5] to name a few.

However, there seems to be a gap in the literature relating to

the educational benefits for students to learn how to design

and implement a GUI.

VISUALIZATION AND ANIMATION

Visualization, particularly through animation of motion

in space, provides a first check of the computational model

against the student’s experience of the physical world. If the

ball in the program is seen to fall up, the student

immediately knows something is wrong (probably the sign

of the acceleration due to gravity) because experientially

balls don’t fall up.

Other visual feedback is more iterative and increasingly

sophisticated. For example, by plotting the kinetic and

potential energies of a bouncing ball synchronously with an

animation of the ball, a student might first notice that in the

drag-less model the total energy, kinetic plus potential, is

constant in time. The student can then ask why and when do

real balls loose energy, which they certainly do. Does more

energy loss occur in a bounce or in aerodynamic drag? How

could we include these in the computational model? The

process of seeing the energy visually as a function of time

makes an otherwise unseen quantity an item of inquiry and

iterative reflection. The student’s mental model, paralleling

the computational model, is refined.

Rapid and nearly continuous visual feedback reveals

how the computational model responds to the variation of

parameters. For example: how does the impact distance

change when the spring constant is varied? The GUI

interface makes it especially easy and revealing. Parameters

can be altered easily by filling in text boxes or moving

sliders. Sliders are helpful because they enable the feel of

continuous variations. Tuning or designing for particular

outcomes (hit the target) is both educational productive and

rewarding.

COURSE STRUCTURE

This approach has been implemented for the past three years

in a first-year engineering course at the College of

Engineering of the University of Notre Dame. Entering

students who intend to major in engineering normally take a

two-semester sequence called Introduction to Engineering

Systems I and II. Here we describe only the MATLAB

programming component of this course.

In the first semester, students learn to use MATLAB as

a calculator and to write simple scripts with no flow control

structures. They use some of the statistical analysis

FIGURE 1

STUDENTS EXPRESS A MATHEMATICAL MODEL AS A COMPUTATIONAL MODEL, WHICH IS THEN

CONNECTED TO A GRAPHICAL USER INTERFACE (GUI) TO FORM A GUI TOOL.

Session F4C

4
th

 First Year Engineering Experience (FYEE) Conference August 9 – 10, 2012, Pittsburgh, PA

 F4C-3

functions of MATLAB to analyze course projects, and learn

to make simple plots.

The first ten weeks of the second semester focuses

primarily on learning MATLAB with the GUI tools

approach, although there is a simultaneous semester-project

which is begun in the third week. The basics of

programming are covered: variables, vectors, strings,

conditionals, loops, plotting, and functions. Animation using

loops is introduces as early. A few advanced features, data

structures and cell arrays, are covered in order to be able to

understand GUIs. In weeks five and six, GUI construction

with GUIDE is introduced. Some special topics then follow:

working with bitmapped images, the Euler and Verlet

methods for solving systems of ordinary differential

equations, numerical integration, and differentiation. These

are chosen in part to satisfy the requests of the students for

capabilities they need for their semester projects.

FIGURE 2

STUDENT-WRITTEN GUI TOOL MODELING A DAMPED, DRIVEN, HARMONIC

OSCILLATOR.

Lectures are twice a week in sections of more than 200

students. The primary format of the lecture is real-time

programming by the instructor, although brief individual or

small group exercises help maintain student engagement.

Some of the students program on laptops along with the

instructor (perhaps 20%). Each week the material

introduced by the lectures is the subject of Learning Center

(LC) activities in smaller sections (about 25 students per

section). The 75 minute LC activities are highly scaffolded

and result in deliverable code turned in by each student.

They are designed to be a guided introduction to the new

material that can be worked out with readily available help

from the LC instructor. The weekly homework builds on the

capabilities introduced in the LC.

The course project, created in teams of four to five

students, is normally a physical device or demonstration and

must have a MATLAB GUI tool model accompanying it.

The model should be refined enough to demonstrate

predictive power, although some calibration of model

parameters is allowed. Students can a elect to do a software-

only project, in which case a more sophisticated model is

required. If the project is game-based, there must be a

substantial artificial intelligence component.

ASSESSMENT

The homework sets entail online submission of programs

and GUI tools. The final project GUI tool is demonstrated in

the LC section and submitted with a final written report.

In addition a midterm and final exam assess the

student’s understanding of MATLAB programming,

including GUI tool creation techniques. This is largely

accomplished through multiple choice questions of the

form: what will happen when this code is executed? Well-

written questions like this assess an interpretive/predictive

knowledge of programming.

Constructive programming ability is assessed by two

in-class Programming Challenges, performed during a

weekly LC time-slot. Each is an individual test of the

student’s ability to write a MATLAB program. The first

Challenge probes the student’s ability to employ

conditionals, loops, MATLAB vector manipulations, and

plotting commands to solve problems. The second

Challenge requires the student to construct a complete GUI

tool. Both result in online submission of code.

REFERENCES

[1] Lent, C. S., Learning to Program with MATLAB:

Building GUI Tools (Wiley, 2013).

[2] Depcik, C. and Assanis, D. Graphical User Interface in

an Engineering Educational Environment in Graphical User

Interfaces, pg. 48, Wiley Periodicals (2005).

[3] Andreatos, A. and Zagorianos, A. MATLAB GUI

Application for Teaching Control Systems. 6th WSEAS

International Conference on Engineering Education.

[4] Aliane, N. A MATLAB/Simulink-Based Interactive

Module for Servo Systems Learning. IEEE Transactions in

Education, vol. 53, No.2, May 2010.

[5] Avitabile,P., McKelliget, J., and Van Zandt, T.

Interweaving Numerical Processing Techniques in

Multisemester Projects. American Society for Engineering

Education Annual Conference (2005).

AUTHOR INFORMATION

Craig S. Lent, Freimann Professor of Electrical

Engineering, University of Notre Dame

Jay Brockman, Associate Dean of Engineering for

Educational Programs, Associate Professor in the

Department of Computer Science and Engineering, and in

the Department of Electrical Engineering at the University

of Notre Dame.

Kerry Meyers, co-Director, First-Year Engineering

Program at the University of Notre Dame, and the Material

Science & Engineering ABET Coordinator and

Teaching Professor of the First-Year Engineering Program,

University of Pittsburgh.

Victoria Goodrich, co-Director, First-Year Engineering

Program at the University of Notre Dame.

