
Session F4B

5th First Year Engineering Experience (FYEE) Conference August 8 – 9, 2013, Pittsburgh, PA

 F4B-1

First Year Student Team Projects Using MATLAB

Kathleen Ossman, Gregory Bucks
University of Cincinnati, kathy.ossman@uc.edu, gregory.bucks@uc.edu

Abstract - This paper describes two team projects

developed for a two semester sequence of courses

entitled Engineering Models I and II designed for all

first year students majoring in engineering and

engineering technology at the University of Cincinnati.

In 2012-2013, the sequence was taken for the first time

by all first year students in the College of Engineering

and Applied Science. The courses apply fundamental

theory from math and science courses to relevant

engineering applications chosen from a variety of

disciplines. MATLAB® is introduced and progressively

developed as a programming tool to enable students to

explore engineering concepts, to investigate solutions to

problems too complex for hand solutions, to analyze and

present data effectively, and to develop an appreciation

of the power and limitations of computer tools. The first

team project occurred during the last four weeks of

Engineering Models I in the fall semester. Teams were

required to develop a game or a set of games using

MATLAB®. At this point in the sequence, students had

basic programming skills but very little exposure to the

graphic capabilities of MATLAB®. To make the project

more engaging, several graphical tools were created by

the instructors to allow the students to make their games

visually interactive. The second team project occurred

during the last four weeks of Engineering Models II.

Each team was required to design a GUI in MATLAB®

that could serve as an effective and engaging teaching

tool for a topic that they learned about in one of their

first-year courses. Students created GUIs on a diverse

set of topics including differentiation, integration, Taylor

series, organic chemistry, statics, projectile motion, and

circuit analysis.

Index Terms - First year engineering courses, MATLAB®

programming, Problem Solving, Team programming

projects.

INTRODUCTION

One of the challenges in engineering education is to

convince students that there is a critical connection between

the topics covered in their mathematics and science courses

and their future engineering courses. Froyd and Ohland [1]

reviewed the literature on integrated engineering curricula;

they pointed out that most engineering curricula provide for

sound foundations in mathematics and science, and

anticipate that students will connect concepts from

mathematics and science to the practice of engineering.

However, there is evidence to indicate that the desired

connections have not been made. Retention rates of first-

year students are low, students see little connection between

engineering and mathematics and science courses, and many

students lack the ability to apply concepts from mathematics

and science in engineering contexts. Cui et al reported

similar results regarding students' transfer of learning from

calculus to physics [2]. They found that solving calculus

problems did not help students to solve isomorphic physics

problems; students had difficulty setting up calculus-based

physics problems, especially when identifying appropriate

variables and limits of integration.

 A second challenge in engineering education is teaching

problem-solving skills. Many first-year engineering

students are comfortable with the concept of exercise

solving which only requires them to mimic examples

provided by the instructor. However, synthesizing and

applying concepts to solve a problem that is dissimilar to

problems encountered before is problematic. Many authors

have reported on the poor problem-solving ability of

students. Heller, Keith, and Anderson [3] suggested that

many physics students regard problem-solving as

independent of physics concepts; they claim to understand

the concepts but can’t solve the problems. Many students

also regard specific mathematical solutions to be the physics

of interest; those students claim to understand the examples

in textbooks but can’t solve test problems because they are

“too different.” Woods et al [4] reported that many

engineering students could not solve problems if the

wording or context of the problem was changed. They also

could not synthesize information from various sources to

solve industrial problems.

 A promising avenue to explore in order to foster the

development of problem-solving skills and to bridge the

content areas of mathematics, science, and engineering is

through computing [5]. Given the extent to which

computers have permeated the engineering design process,

our engineering students must develop strong computing

skills in addition to the traditional disciplinary skills. This

sentiment has been echoed by many, including the National

Academy of Engineering, who identified computing skills

as one of the attributes required for future engineers in their

Engineer of 2020 report [6]. Computing affords instructors

the ability to introduce “hands-on” projects and activities

early in the engineering curriculum while requiring little

disciplinary knowledge on the part of the students and no

additional materials. Hands-on projects and activities have

been shown to increase student motivation and interest in

course content and improve retention [7]-[8]. Through

mailto:kathy.ossman@uc.edu
mailto:gregory.bucks@uc.edu

Session F4B

5th First Year Engineering Experience (FYEE) Conference August 8 – 9, 2013, Pittsburgh, PA

 F4B-2

computing, instructors can bring together concepts and ideas

from mathematics, science, and engineering and allow

students to interact with them, helping to form the mental

connections necessary for more expert-like understanding

[9]-[10].

 In addition, many first-year engineering courses are

tasked with developing the soft skills (communication,

teamwork, etc) required by ABET and necessary to perform

well as an engineer. Computing can also play a role in

developing these skills. There has been extensive interest

recently in the use of pair programming, which brings

together pairs of students to work on solving complex

computing problems [11]. Pair programming has been

shown to increase student performance, motivation, and

confidence [12]-[13]. These benefits extend to larger

groups as well [14].

 In the fall of 2012, the University of Cincinnati

converted from a quarter system to a semester system. This

conversion provided an ideal opportunity to review the first-

year curriculum for the engineering and engineering

technology students and make changes to help improve

retention and performance of students in the College of

Engineering and Applied Science (CEAS). The college

faculty agreed on an almost common first year (Table I),

which would include a one year sequence called

Engineering Models to try to address the issues of poor

problem-solving skills and the lack of connectivity between

mathematics and science courses and later engineering

courses. The Engineering Models sequence was developed

and piloted over the two year period preceding the semester

conversion. In 2012-2013, the sequence was required for all

800 first-year CEAS students.

TABLE I

FIRST-YEAR CURRICULUM

Fall Semester Spring Semester

Engineering Models I

Engineering Foundations
Chemistry I

Pre-Calculus or Higher

Engineering Models II

Discipline Specific Engineering Course
Physics or Chemistry II

Calculus I or Higher

 Engineering Models I and II is a two semester sequence

of interdisciplinary courses in which students apply

fundamental theory from algebra, trigonometry, calculus

and physics to relevant engineering applications chosen

from a variety of disciplines. MATLAB® is introduced and

progressively developed as a programming tool to enable

students to explore engineering concepts, to investigate

solutions to problems too complex for hand solutions, to

analyze and present data effectively, and to develop an

appreciation of the power and limitations of computer tools.

Special attention is given to graphical visualization of

concepts and to numerical approximation techniques and the

errors associated with approximations. The course

objectives are:

(1) To explore the application of algebra, trigonometry, and

calculus to various engineering disciplines,

(2) To learn the fundamentals of programming and good

programming practices and utilize these skills to solve

numerical problems and create numerical algorithms

with MATLAB®,

(3) To develop good problem-solving skills by applying

problem solving strategies to a variety of engineering

problems, and

(4) To cultivate effective team-work and communication

skills through lab work and design projects.

 This paper focuses on the team projects in Models I and

Models II. In Models I, student teams developed a game or

a set of games. In Models II, student teams created a

graphical user interface (GUI) that could serve as an

effective teaching tool on a topic from one of their first-year

courses or their chosen discipline. A description of each

project, the preparation materials and pre-project lab

exercises developed for the students, methods of

assessment, and samples of student projects are included. In

addition, student survey results and observations by the

authors are included.

ENGINEERING MODELS I: GAME PROJECT

I. Project Description

The first team project occurred during the last four weeks of

Engineering Models I in the fall semester. Teams were

required to develop a game or a set of games using

MATLAB®. Most teams consisted of three students but

there were some teams of two and a few teams of four

students. In order to accommodate a very wide range of

programming ability and interest at this point in the course,

teams were allowed to choose a set of simple games or a

single more complicated game to achieve a total of four

complexity points. A list of game suggestions along with

complexity points is shown in Table II. Teams were

required to choose at least one game with a complexity

rating of two or higher. Teams were also allowed to

propose their own games along with a justification for

complexity level. The authors programmed most of these

games prior to launching the project in order to decide on

complexity points for each game.

TABLE II
COMPLEXITY POINTS FOR GAMES

Points Game

1

2

2
2-3

3

3
3-4

4

4
4

2-4

3-4

Simple Dice Games (Craps, Over/Under Seven)

Simple Card Games (War, Go Fish, Memory)

Hangman
Solitaire – depending on complexity of gameplay

Black Jack

Master Mind
Connect Four – higher points for smart computer player

Othello

Yahtzee
Euchre

Adventure – depending on monster placement, number of

levels and complexity of scoring
Battleship – higher points for smart computer player

Session F4B

5th First Year Engineering Experience (FYEE) Conference August 8 – 9, 2013, Pittsburgh, PA

 F4B-3

II. Materials Developed for Students

At this point in the sequence, students had some basic

programming skills (conditional statements, loops, and

arrays) but had no exposure to the graphic capabilities of

MATLAB® other than basic types of plots. In order to

make the project more engaging for the students, several

graphical tools were created by the instructors to allow the

students to make their games visually interactive. The

graphical tools included several popular game boards such

as Connect Four, Master Mind, Othello, Adventure, and

Battleship as well as decks of cards and dice. These tools

were provided as .mat files accompanied by word

documents describing the MATLAB® commands needed to

display and update the various boards as gameplay occurred.

For example, the Connect Four file consisted of a 6x7 cell

array game board along with images of a red chip and a

black chip that could be plugged into the board as the game

proceeded. Images from this file are shown in Figure 1.

FIGURE 1

IMAGES FOR CONNECT FOUR

 The week before the teams began working on the

project, students were provided with a video that described

all of the resources available for various games and also

demonstrated several of the games. In recitation, students

formed teams and completed a warm-up exercise, a simple

two-player game of Tic-Tac-Toe, in order to become

familiar with displaying and updating a game board, and

creating a 3x3 numerical array to track player moves,

determine allowable moves, and declare a winner.

III. Assessment

Teams worked on the games during recitation for the first

three weeks of the project. At the end of the first and

second week, the team leader was required to submit a

progress report detailing work completed, work remaining,

and any difficulties the team was encountering. In the final

week, teams demonstrated their games to the instructor,

teaching assistants, and all other students in the class. Each

team was required to submit a final report and all game

files. In addition, each student was required to submit a

peer evaluation in which he/she evaluated his/her own

contributions to the project and the contributions of the

other team members. The project counted 15% of the

course grade. Table III shows the rubric for grading the

project.

TABLE III

GRADING RUBRIC FOR TEAM PROJECT (FALL)

Points Criterion

5
5

40
5

10

10
5

5

15

Progress Report #1
Progress Report #2

Meets Complexity Point Requirements
Games are User Friendly

Used Good Programming Practices

Final Report
Oral Presentation (Game Demonstration)

Submitted Peer Evaluation Form

Individual Score

IV. Student Projects

Many of the student teams opted to program a set of simple

games. We had quite a few hangman and war

demonstrations to sit through. However, several teams chose

more complicated games. In Dr. Ossman’s three sections,

30 of the 64 teams chose to include a game with a rating of

three or four complexity points. In Dr. Bucks’ two sections,

30 of the 40 teams chose games with complexity levels of

three or higher.

 Battleship was a very popular choice. A screenshot of

the graphical tools provided for Battleship is shown in

Figure 2(a). Some teams opted to have the computer player

shoot randomly but several teams incorporated intelligence

on the part of the computer and added explosion sound

effects. A few teams programmed multiple complexity

levels (easy, normal, insane, chaotic, and absurd) and even

added background music to accompany the game.

 Adventure, Figure 2(b), was also a popular choice for

many of the teams. Most of the teams doing Adventure

chose to throw out the board, player, and monster graphics

provided and incorporate their own characters instead. One

team even went so far as to write a background futuristic
story about a technology spy whose girlfriend was

kidnapped by terrorists and created seven levels of the game
which the player had to pass through to save his girlfriend.

This team also composed their own background music.

 Another team studied the graphical tools provided and

went on to create their own puzzle game shown in Figure

2(c). The player was required to manipulate boulders

(circles with roman numerals) through a maze to an escape

hatch while avoiding black holes. Seven different levels of

difficulty were created and players beating a level received a

code which allowed them to proceed to the next level of

difficulty.

Session F4B

5th First Year Engineering Experience (FYEE) Conference August 8 – 9, 2013, Pittsburgh, PA

 F4B-4

(a) Battleship

(b) Adventure

(c) Puzzle Game

FIGURE 2

IMAGES FROM SELECTED GAME PROJECTS

ENGINEERING MODELS II: GUI PROJECT

I. Project Description

The second team project occurred during the last four weeks

of Engineering Models II in the spring semester. Each team

was required to design a GUI in MATLAB® that could

serve as an effective and engaging teaching tool about some

topic that they learned about in one of their first-year

courses. A GUI program has a modular structure; that is,

each pushbutton, slider, pull-down menu, text block, and

radio button panel added to the GUI results in a separate

callback function within the program that needs to be coded.

This modular structure allowed students to divide the

programming tasks among the team members. In addition,

students had the opportunity to be creative both in terms of

selecting a topic to cover and in choosing which objects to

use for their GUI to create an effective and engaging

teaching tool for their topic. Most teams consisted of three

students but there were some teams of two and a few teams

of four students.

II. Materials Developed for Students

In recitation the week before the project started, all students

participated in an instructor-led tutorial in which they

created a simple GUI using GUIDE in MATLAB®. The

instructor explained how to write code to get and set various

properties of the objects. Students were also provided with

a PowerPoint presentation that explained how to create a

GUI using GUIDE, how to write code for the variety of

objects available, and also included sections on frequently

asked questions and common errors.

III. Assessment

For the first three weeks of the project, teams worked on the

GUIs during recitation. A few days before the second week,

the team leader was required to submit a progress report

detailing what topic the team had chosen and how the work

would be divided up among team members. In the final

week, teams demonstrated their GUIs. Each team was

required to submit a final report and all program files. In

addition, each student was required to submit a peer

evaluation in which he/she evaluated his/her own

contributions to the project and the contributions of the

other team members. The Teaching Assistants also

evaluated each student based on their participation in and

contribution to the project. Projects were evaluated by the

instructors based on functionality, ease of use, effectiveness

of the GUI as a teaching tool, creativity, and appearance.

The project counted 20% of the course grade. Table IV

shows the rubric for grading the project.

Session F4B

5th First Year Engineering Experience (FYEE) Conference August 8 – 9, 2013, Pittsburgh, PA

 F4B-5

TABLE IV

GRADING RUBRIC FOR TEAM PROJECT (SPRING)

Points Criterion

5
15

15

15
15

5

15
15

Progress Report #1
Functionality of GUI

Engagement/User Friendly

Complexity
Creativity and Appearance

Demonstration of GUI

Final Report
Individual Score

IV. Student Projects

Students produced GUIs on a very diverse set of topics

including differentiation, integration, Taylor series, organic

chemistry, statics (beam loading), projectile motion, and

simple circuit analysis. There was one team of eleven

students that created a “Freshmen Survival Guide”. This

team broke into subgroups and covered topics from five of

their freshmen courses: calculus, statics, MATLAB®

programming, chemistry, and Solid Works.

 Figure 3 includes screen shots from some of the GUI

projects. The organic chemistry GUI allows the user to

choose one of five possible starting materials and one of

twelve possible reactants. Clicking on the React button will

either produce an image of the product of the reaction and a

table of properties for the materials or will indicate that the

materials do not react and explains why not.

 The Circuit GUI shown in Figure 3(b) allows the user

to choose up to five resistors in series or parallel and specify

values for each resistor. An image is produced based on the

user’s selection. The user is then prompted to calculate the

total resistance and is able to check his/her answer.

 The ALGO-RACE GUI shown in Figure 3(c) allows

the user to select three different sorting algorithms from a

set of five choices. The user also selects the maximum size

of the vector to be sorted as well as characteristics of the

values in the vector (random, few unique, sorted ascend,

sorted descend). The GUI will then display the sorting

process to the user and time the process for the three

algorithms chosen.

 The Integration GUI shown in Figure 3(d) allows the

user to pick one of six common functions and a set of limits.

Based on the user’s choice, the integral of the function is

computed, the area under the curve is plotted, the volume of

revolution is computed, and a 3-d graph of the solid of

revolution is plotted.

(a) Organic Chemistry

(b) Simple Circuits

(c) Sorting Algorithms

Session F4B

5th First Year Engineering Experience (FYEE) Conference August 8 – 9, 2013, Pittsburgh, PA

 F4B-6

(d) Integration Concepts

FIGURE 3

IMAGES FROM SELECTED GUI PROJECTS

STUDENT COMMENTS

At the end of Engineering Models II, a survey was deployed

using Blackboard. 443 students (65%) participated in the

survey. Approximately one third of these students indicated

that the team projects were what they enjoyed most in the

sequence of courses. 18 students mentioned that they would

have liked more preparation for the GUI project. Here is a

sample of student comments about the projects:

 I enjoyed doing the GUI's because it allowed you to

make a physical app in a way that is easy to learn how

to make and create other concepts that were shown to

us throughout the semester

 I enjoyed the projects. I thought it was very cool to

actually apply our knowledge into a functioning

product.

 I really enjoyed it all, but my favorite was probably the

final projects, using mat files and GUIs to make our

programs come to life. With the other programs, it

would be just text asking for more text and computing

even more text, but then in the projects, we made

games. We made moving figures. Heck, in our GUI

we made a spinning wheel. It really made clear

everything that we've been learning, and gave a taste of

the real-world applications.

 I most enjoyed the end of the semester projects because

you got to create something that you wanted to and

design every aspect of it.

 I enjoyed learning about GUI's because it provides a

visual realization of the coding in a user-friendly

setting. I also really enjoyed just the general process of

writing codes and making programs do the work for the

user, especially coming up with more efficient, user-

friendly, less cluttered ways.

 Both projects were enjoyable. Having very little

background in coding or any programs that operate like

MATLAB, it was very beneficial for me to further

develop my skills by working with those that have

greater experience than me.

 On top of enjoying the general subject, I really enjoyed

the final projects for both courses. They were a great

test of my skills and knowledge of MatLab, and I

enjoyed applying everything I've learned into one

program. Furthermore, it was really satisfying to finish

such projects and know that we created really awesome

programs by ourselves from scratch.

INSTRUCTOR OBSERVATIONS

Both of the projects required students to function effectively

as a team: brainstorming ideas, utilizing the talents of each

member of the team, communicating with one another, and

distributing and scheduling the work. Designing an

effective team project where all students in the group

participate is challenging because the tendency is for the

strongest member(s) in the group to complete most of the

work with little input from the rest of the group. The

modular structure of the GUI allowed teams to divide tasks

among the team members. For the game project, several

teams chose to do a set of games and were able to divide the

development work up by game.

 The team projects required far more programming than

any of the recitation and homework assignments from the

two semesters. Although some students complained about

the difficulty of the assignments, very few had complaints

about the projects. Games and GUIs are viewed as fun by

the students and therefore worth the extra effort. Students

seemed much more willing to experiment with code and

explore MATLAB® to find functions that would accomplish

what they wanted in their projects.

 The open-ended nature of the project allowed the

students to express their own ideas and make the project

their own. With most of the recitation and homework

assignments, students were presented with a problem to

which they had to find the “right” solution. Since the course

caters to all engineering majors in the college, many

questions on assignments did not relate directly to a

student’s chosen major. With the projects, students had the

freedom to choose their own topic, making it much more

personal and motivating them to go above and beyond the

minimum requirements for the project.

 One of the biggest challenges of these projects for the

instructors and teaching assistants was the sheer number of

teams and the diversity of projects each team was working

on. Allowing students to choose from a long list of games

Session F4B

5th First Year Engineering Experience (FYEE) Conference August 8 – 9, 2013, Pittsburgh, PA

 F4B-7

(or propose their own) and to select their own topic for the

GUI made each team’s project pretty unique. Dr. Ossman

had 64 teams working on games in the first semester and 60

teams designing GUIs in the second semester. Dr. Bucks

had 40 teams working on games in the fall semester and 61

teams designing GUIs in the spring semester. This

represented only about half of the students enrolled in the

sequence.

 For the gaming project, there were a few students that

found (and copied) code on-line, mainly through the

MathWorks Central File Exchange. This was pretty easy to

spot and deal with. Students that used the graphical tools

that we provided could not use pre-written code. In the

future, we may require students to use the provided

graphical tools. In retrospect, it may have been better for us

to offer a smaller set of games as choices since we will

likely need a different set of choices next year.

FUTURE WORK

The retention data for the first year students from last year

will be available in mid-August. This data will be compared

to the retention data from previous years. We are also

looking at the performance of the students in their

mathematics and science courses as compared to previous

years. In addition, these students will being going out on

their first co-op this coming year. We plan to look at the co-

op employer survey data and compare student performance

on their first co-op job to the baseline data from previous

years. The co-op employer survey has several questions

pertaining to team-work, communication skills, and problem

solving ability.

 This year, we plan to implement a flipped pedagogy in

Engineering Models I and II. We will compare student

performance on exams, projects, and assignments with

performance from last year. We are also adding some

combination software/hardware experiments to Models I

and II and hope to motivate some of the students who view

their engineering disciplines as “non-computing”

disciplines. The end of course survey will be modified to

include specific questions about the team projects.

 ACKNOWLEDGMENT

The authors would like to acknowledge the students whose

projects were highlighted in this paper: Battleship (Aaron

Cunningham, Henry Jentz, Kendrick Li) Adventure

(Chelsea Duran, Michael Strohofer, Aaron Trachtenburg),

Puzzle Game (Jacob Hall, Josh Myers, Ryan Vanderhart),

Organic Chemistry (Colin Dorey, Bryan Langlois, Mack

McNamee), Circuits (Kyle Abner, John Cooker, Brian

Tsen), ALGO-RACE (Kevin Ernst, Allyssa Griffith, Robert

Ipach), and Integral Concepts (Christopher Groh, Adam

Kozerski, John Miller, Joshua Quach).

REFERENCES

[1] J. Froyd and M. Ohland, “Integrated Engineering Curricula,” Journal

of Engineering Education, 147-164, (2005).

[2] L. Cui, N.S. Rebello, and A.G. Bennett, “College Students’ Transfer
from Calculus to Physics,” AIP Conference Proceedings 818, 37-40,

(2005).

[3] P. Heller, R. Keith, and S. Anderson, “Teaching Problem Solving
Through Cooperative Grouping. Part 1: Group Versus Individual

Problem Solving,” Am. J. Phys. 60, 627-636 (1992).

[4] D. R. Woods, A. N. Hrymak, R. R. Marshall, P. E. Wood, C. M.
Crowe, T. W. Hoffman, J. D. Wright, P. A. Taylor, K. A.

Woodhouse, and C. G. K. Bouchard, "Developing Problem Solving

Skills: The McMaster Problem Solving Program," ASEE J. of Engr.
Educ. 86, 75-91, (1997).

[5] F. P. Deek, H. Kimmel, J. A. McHugh. "Pedagogical changes in the

delivery of the first-course in computer science: problem solving,
then programming." Journal of Engineering Education 87, 3, 313-320

(1998).

[6] National Academy of Engineering. “The engineer of 2020 : visions of
engineering in the new century.” Washington, DC, National

Academies Press, 2004.

[7] C. L. Dym, "Learning engineering: design, languages, and
experiences." Journal of Engineering Education 88, 2, 145-148,

(1999).

[8] Pendergrass, N, A, Kowalczyk, R, E, Dowd, J, P, Laoulache, R, N,
Nelles, W, et al, "Improving first-year engineering education",

Frontiers in Education, (1999).

[9] P. N. Johnson-Laird, “Mental models: towards a cognitive science of
language, inference, and consciousness.” Cambridge, MA, Harvard

University Press, 1983.

[10] J. D. Bransford, A. L. Brown, R.R. Cocking, Eds. “How people learn:
brain, mind, experience, and school.” Washington, D.C., National

Academies Press, 1999.

[11] L.L. Constantine, “Constantine on peopleware.” Englewood Cliffs,
NJ, Yourdon Press, 1995.

[12] C. McDowell, L. Werner, H. Bullock, J. Fernald, “The effects of pair-

programming on performance in an introductory programming
course.” SIGCSE Bull. 34, 1, 38-42 (2002).

[13] C. McDowell, L. Werner, H. Bullock, J. Fernald, “The impact of pair

programming on student performance, perception and persistence.”
International Conference on Software Engineering, Portland, Oregon

(2003).

[14] C. A. Bagley, C. C. Chou, “Collaboration and the importance for
novices in learning Java computer programming.” SIGCSE Bull. 39,

2, 211-215 (2007).

AUTHOR INFORMATION

Kathleen Ossman Associate Professor, Department of

Engineering Education, University of Cincinnati,

kathy.ossman@uc.edu

Gregory Bucks Assistant Professor - Educator, Department

of Engineering Education, University of Cincinnati,

gregory.bucks@uc.edu

