
Session M4C

7th First Year Engineering Experience (FYEE) Conference August 3 – 4, 2015, Roanoke, VA
 M4C-1

A Candid Look at a Decade of First-Year
Engineering Experiences Programs

Donatus C. Ohanehi

Virginia Tech, dohanehi@vt.edu

Abstract - The Engineering Education community can
reap benefits from an outsider’s perspective on First-
Year Engineering Experiences programs. Such
perspectives from an actively involved outsider may
mirror perspectives of other interested observers like
parents or industrial sponsors or alumni, perspectives
that could be useful to the Engineering Education
community in assessing the effectiveness of FYEE.
What follows are highlights of observations from a
decade of teaching first-year engineering classes as an
adjunct instructor. The observations will focus on
developments in three areas: “gentle” introductions to
computer programming, project-based learning, and
the changing structure of instructional teams necessary
for teaching large numbers of first-year engineering
students. The “gentle” introduction to computer
programming started with the “Alice” program, moved
to LabVIEW, and currently features a “gentle”
introduction to MATLAB. Project-based learning
started with traditional hands-on projects where
students did all project work outside class. The current
model is more formal PBL where significant portions of
class time are used directly or indirectly on the project,
and class content is significantly dictated by the needs of
appropriate projects. Instructional team structures
ranged from the traditional solo teaching model, a
decade ago, to large-lecture models with workshops led
by a trained and mentored team of graduate teaching
assistants. The current model employs a regular class
size, taught by a team of instructors and graduate
assistants, but with a combination of lectures and
workshops implementing PBL. The perspective
presented here is expected to lead to constructive
discussions because the developments described were led
by educators who are passionate about student learning,
and are taking steps to promote learning. Such
educators have the insiders’ views on the developments
described. It would be interesting to correlate insider,
outsider, and student perspectives, and to mine for
potential correlations in the tons of student data
accumulated in the past decade.

Index Terms - trends in first-year engineering experiences,
hands-on teaching, project-based learning, technology-
enhanced learning.

INTRODUCTION

A wide range of developments has occurred in a decade of
teaching first-year engineering classes. This paper presents
a unique perspective on these developments. Both the
author’s status and selected focus areas for this paper
contribute to the uniqueness. The author has been an
adjunct instructor for a decade, teaching numerous first-year
engineering classes and a few sophomore-, junior-, and
senior-level mechanics and mechanical engineering classes.

The presentation of a unique perspective is meant to
complement existing perspectives in the Engineering
Education community. The author did not conduct any
investigations or interviews but is simply summarizing
observations of a highly interested and involved “outsider.”
While the perspective reported is not expected to duplicate
“insider” perspectives, it is expected that this perspective
may mirror perspectives of significant stakeholders in the
Engineering Education enterprise: parents of first-year
engineering students, administrators, industrial sponsors,
and alumni who are not in the engineering education field
but support educational programs,

Three focus areas for this paper are: “gentle”
introductions to computer programming, project-based
learning, and the changing structure of instructional teams
necessary for teaching large numbers of first-year
engineering students.

INTRODUCTIONS TO COMPUTER
PROGRAMMING

The current semester’s (Summer 2015) statistics on
computer programming experience for first-semester
engineering students are similar to typical data for the
decade. Only 13% claimed that they considered themselves
as “having significant programming experience.” Thus
first-semester classes are geared to students with no
programming experience. A decade ago, MATLAB was
used in both the first and second semesters. First-semester
tests involving MATLAB had low scores and MATLAB
essentially functioned as a “weeder” tool for this class.

About 9 years ago, Carnegie Mellon University’s
program, “Alice,” was used as a “gentle” introduction to
computer programming [1]. An Alice user simply drags-
and-drops icons, and is forced to avoid syntax errors, but
learns basic programming constructs by building 3D virtual
worlds. Typical students seemed to enjoy using the
program, confirming national studies showing the
effectiveness of this program and similar in making
programming accessible to hitherto excluded populations
[1]. However, what seemed like a revolt started in the

Session M4C

7th First Year Engineering Experience (FYEE) Conference August 3 – 4, 2015, Roanoke, VA
 M4C-2

second year of Alice’s introduction. A group of students
placed highly negative posters all over campus, and
apparently had the support of an Engineering Education
faculty member, who was probably attempting to preserve
the tried and true traditional approach. The argument was
that the program had been stigmatized by being used in
middle schools and minority populations, and had never
been used directly in professional engineering work.

LabVIEW [2] was introduced next because it was also a
drag-and-drop program, with virtually no room for syntax
errors. However, LabVIEW was a professional engineering
program with object-oriented features and was highly
popular in engineering test laboratories. Most students
seemed to enjoy the program and some used the program
beyond their first years. However, MATLAB was still used
in the second-semester, first-year classes, requiring students
to learn two completely new programming languages in 2
semesters.

The transition to MATLAB in both first-year semesters
was a part of the re-vamped first-year classes, with a focus
on project/problem-based learning. In the first semester, a
“gentle” introduction to MATLAB was used. Students were
required to watch introductory videos, before classes, and
the problems’ flowcharts with segments of MATLAB codes
were provided in class. A key feature in the “gentle”
introduction is the two-step approach in employing
flowcharts. In the second semester, students were required
to understand and create flowcharts as graphical, big-picture
means for planning their codes. However, in the first
semester, students were merely required to understand
flowcharts and be able to produce codes based on provided
flowcharts. Thus, students received guided instruction in
class, with many opportunities to get programming help
(MATLAB help sessions and MATLAB “lounge” sessions)
outside class.

PROJECT-BASED LEARNING

A decade ago, numerous opportunities were created to
incorporate hands-on activities in class. Teamwork was
encouraged. The most prominent opportunities were in
design projects [3] which required physical prototypes, and
project work was done primarily outside class time.
Examples of first-semester project activities included design
topics involving toy cars or using Alice software to build
games, but second-semester topics were fairly elaborate. For
example, one year’s project was the design, construction,
and testing of “punkin-chunkin” pumpkin launchers [4]. The
best launchers in each class were sent to a national
competition and some of the entries placed nationally. The
classes’ testing sessions were run by shifts of instructors,
used up entire weekends and one weekday evening.
Interestingly, after the punkin-chunkin projects, the
following semesters’ projects were scaled down
considerably, perhaps because of instructor burnout. The
following year’s projects required strictly paper design
including complete sets of Autodesk Inventor CAD
drawings and animation, if possible.

At this point, both the first- and second-semester
projects were largely add-on’s to the classes. Most of the
work was done outside class, and class content was not
driven by the projects. For some years, to incorporate some
MATLAB in the projects, students were required to select
one component of their project and use MATLAB to
generate it. The most popular student choice was the
generation of a decision matrix table using MATLAB.

A slight revival in physical prototypes started when the
focus of first-semester projects shifted to sustainability, and
cheap simple materials were provided to student teams for
designing and producing simple displays promoting
sustainability.

The current model is explicitly project-based learning,
PBL, [6, 7] in the second-semester course, with course
content driven primarily by the requirements of projects
selected to furnish exercises in engineering fundamentals.
The first-semester course has a project that offers the
beginnings of PBL. Another major difference between PBL
and traditional offerings is the amount of class times
allocated to project activities in the PBL class model. Class
times include frequent in-class team reporting and feedback
from both the instructor and other students. Teamwork is
promoted through discussions of expert recommendations
for high-performance teams. Problem solving skills are
discussed and applied to the project [8 - 11]. While course
content was drawn from ABET criteria, there was concern
by some (perhaps those that have leanings towards the
traditional model) over the amount of content that had been
included.

INSTRUCTIONAL TEAM STRUCTURES

A decade ago, first-year engineering classes were regular
class sizes (about 30 students) meeting for 60 minutes, twice
a week. Instructors were generally assigned 2 or 3 or 4 class
sections. Classes were the classic lecture style, with
students required to do homework and work on projects, at
“home,” outside class. Given very limited interactions
between the lecturing instructors and the note-taking
students, it was fairly clear that instructors repeated the
same lectures. The first class received the fresh version of
the lecture, while succeeding classes were not as fresh for
the instructor, but had better timing. The repetitive nature
of the same lectures given to small groups of students, in
succeeding hours, provided a good case for going to large
lectures, given that the content was the same, and there was
little interaction with the students. Interestingly, new
technologies were also emerging for providing some
interaction between a lecturer and large groups of students.
Some degree of excitement accompanying technology-
enhanced learning tools (clickers and DyKnow software),
combined with university-wide calls to cut costs, drove the
introduction of large-lecture class sizes [12] in the first- and
second-semester classes.
 Large class sizes ranged from about 130 to 250
students, meeting in large auditoriums. Large classes met
for 60 minutes per week and then for a second class period,

Session M4C

7th First Year Engineering Experience (FYEE) Conference August 3 – 4, 2015, Roanoke, VA
 M4C-3

students met in workshops (90 – 120 minutes) with regular
class sizes of about 30. These workshops were led primarily
by graduate teaching assistants. The assistants were trained,
mentored, and supervised.
 In the current model, there has been a revival of the
regular class size of about 30 students. Individual
instructors, including trained, mentored, and supervised
Engineering Education graduate teaching assistants, were
fully responsible for 1 to 5 classes. Each class period, 75
minutes long, is typically a combination of a brief lecture
and a longer workshop period. There is generally significant
levels of interaction between the instructor and the students,
and subsequent class periods are generally different, unlike
the sameness in the traditional model. The instructor has
more of a facilitator / coaching role and this is more
challenging than the traditional lecturing role.

DISCUSSION

For each of the three focus areas discussed, there had been
conflicts between Engineering Education people with
traditional views and those with more progressive views.
The conflicts slowed down or complicated the adoption of
the newer methods, but probably provided more balanced
solutions. This author did not investigate details of these
conflicts. Lack of investigation to dig for details in these
issues is a limitation of this paper. This paper is strictly a
summary of recollections of historical observations. This
paper is expected to stimulate some beneficial debates and
to motivate an exploration of the theoretical underpinnings
of the observations and trends described.

CONCLUSIONS

The perspective presented should serve in filling in a more
complete stakeholder perspective. Papers published by
course coordinators represent the “insider” views. A
number of questions may be worth exploring. How much of
a difference exists between “insider” and “outsider”
perspectives? If large differences are anticipated between
perspectives, is it worth the effort to communicate more on
such issues like the reasons why some strategies (such as
LabVIEW use in the first semester) were stopped? Is it
practical to communicate more, given that course
coordinators are already overloaded? Major steps have been
taken in the three areas discussed, and there have been
major productive interactions (conflicts!) between apparent
traditionalists and progressives (as they appear to an
“outsider”), potentially strengthening the resulting teaching
models.

ACKNOWLEDGEMENT

The author acknowledges the Engineering Education
Department, Virginia Tech, for offering the opportunities
that made this paper possible. Inputs from Professor
Richard Goff, Virginia Tech, are gratefully acknowledged.

However, the author is fully responsible for all errors and
biases in this paper.

REFERENCES

[1] Kelleher, C, Pausch, R., “Lowering the Barriers to Programming: A

Taxonomy of Programming Environments and Languages for Novice
Programmers,” ACM Computing Surveys (CSUR), Volume 37, Issue
2, 2005, June, 83-137.

[2] National Instruments, Inc., “LabVIEW System Design Software,”
http://www.ni.com/labview/.

[3] Dym, C. I., Little P., Engineering Design: a Project-based
Introduction, John Wiley & Sons, Inc., 2009, 3rd edition,

[4] Pumpkin-chunkin http://www.punkinchunkin.com/

[5] Dynamic Knowledge, Inc. DyKnow. www.dyknow.com

[6] Bell, S., “Project-based Learning for the 21st Century: Skills for the
Future,” The Clearing House: A Journal of Educational Strategies,
83 (2), 2010, 39–43.

[7] Abdulaala, R. M., et al., “Design and Implementation of a Project-
based Active/cooperative Engineering Design Course for Freshmen,”
European Journal of Engineering Education, Vol. 36, No. 4, 2011,
August, 391–402.

[8] Wankat, P. C., The Effective, Efficient, Professor: Teaching,
Scholarship and Service, Allyn and Bacon, 2002, 107 – 112.

[9] Brockman, J. B., Introduction to Engineering: Modeling and Problem
Solving, John Wiley & Sons Inc., 2009.

[10] Savery, J. R., Duffy, T. M., “Problem Based Learning: Instructional
Model and its Constructivist Framework,” Educational Technology,
35, 1995, pp.31 – 38.

[11] Jonassen, D. H., Learning to Solve Problems: An Instructional
Design Guide, Pfeiffer, 2004, chapters 2 - 4, 8.

[12] McKeachie, W. J., Teaching Tips: Strategies, Research, and Theory
for College and University Teachers, D. C. Heath and Company,
1994, pp. 195 – 222.

