
Session T1D

First Year Engineering Experience (FYEE) Conference July 31 – August 2, 2016, Columbus, OH

 T1D-1

An Application-Based Freshman Introductory

Programming Course using the Raspberry Pi

W. Lawson, S. Secules, and S. Bhattacharyya
The University of Maryland, College Park, lawson@umd.edu, secules@umd.edu, ssb@umd.edu

Abstract - An innovative approach to teaching an

introductory C programming course to freshman

electrical engineering students has been developed. The

innovation stems from the use of electrical engineering

applications and projects to motivate students to master

language syntax and implement key programming

concepts and best practices. Two lectures per week cover

programming concepts, introduce hardware and discuss

applications. Weekly laboratory sessions center around

writing C code on a Raspberry Pi (RPi) computer to

interact with a variety of sensors, actuators, and

electronic components and achieve laboratory goals. The

laboratory experience culminates with two multi-week

hardware projects designed to challenge the students’

new knowledge and skills.

The new course has been run in parallel with a

traditional introductory C class. Program evaluation has

been conducted by a research team which operates

separately from but advises the team of instructors

about course improvements. Results show that students

in the alternative course find it more collaborative, less

competitive, and having a greater sense of community

than students in the traditional class.

Index Terms – application-driven, C language, freshman

programming, Raspberry Pi.

INTRODUCTION

For several decades now there has been an increasing

emphasis on using active-learning in freshman engineering

courses [1-3]. A central feature of active-learning settings is

the affordances for collaborative settings and student-

centered instruction, which have been shown to have

cognitive, affective, and persistence advantages for students

[4]. While a large number of these efforts have focused on

freshman design courses, there has been some effort to shift

the emphasis to introductory programming courses. A

standalone computational platform in the form of a micro-

processor is often used as the “brain” of a design project;

likewise, a microprocessor can be necessary when moving

programming instruction from didactic, lecture-based, and

professor-centered settings to spaces where students have

more agency to explore programming applications in real

time and relevant settings.

The principle goal of this project is the development

and delivery of an application-based programming course

for freshman that emphasizes both software and hardware

components that are typical of simple embedded

applications. The course assumes no programming

experience and no introductory orientation to the electrical

engineering (EE) profession. It is offered as a 3-credit

alternative to a traditional software-only 2-credit

introductory C programming course. The credit difference

between the two courses allows the lecture time needed to

introduce the hardware segment of the course.

The course requires both individual software-only

programming homework and application-driven

assignments in which the students write code to interact

with hardware. Virtually all programming assignments

have a connection to the EE discipline. This project-driven

course involves two hours of lecture and one three-hour lab

session each week. In addition to mastering the student

learning outcomes of our traditional introductory

programming course, students in our course are introduced

to many concepts from the electrical engineering discipline,

including elements of circuit theory, electromagnetics,

communications, and control systems.

The research component of this proposal is designed to

measure whether or not, and to what extent, the course

achieves the student learning outcomes. It will also

contribute to basic research on how students’

epistemological stances towards programming influence

their actions during programming.

COURSE CONTENT AND STUDENT LEARNING OUTCOMES

The course lectures are divided into 18 modules of varying

lengths. The module titles are given in Table I. The ten

programming modules are presented in order and cover the

same material as in the traditional C programming course

with the exception of a unit on Unix. The first module

touches on most features of the language in a relatively

superficial way and the remaining modules explore each

topic in greater depth. The eight hardware modules are on

average much shorter than the programming modules and

are inserted into the lectures as needed for the students to be

successful in the laboratory.

The Student Learning Objectives are as follows. All

students who pass this course will have an:

 Operational familiarity with elementary programming

concepts: program flow, data types, arrays and memory,

logic and arithmetic operations, input/output and

functions.

 Ability to utilize good programming practices to write

efficient, clear, and maintainable code.

Session T1D

First Year Engineering Experience (FYEE) Conference July 31 – August 2, 2016, Columbus, OH

 T1D-2

 Ability to use an IDE to write, debug, load and run code

to solve engineering problems, perform basic

calculations, and input and output meaningful data.

 Appreciation for the enabling role of programmable

devices in technological systems and applications.

 Understanding of the operation of basic electronic

components, sensors and actuators.

 Ability to work effectively in teams.

 Ability to communicate effectively in written and oral

formats.

TABLE I

THE NOVEL C PROGRAMMING COURSE MODULES.

1 A crash course in C

programming
10 Introduction to Unix

2 Data types 11 The Raspberry Pi and the GPIO

3 Operators 12 Introduction to basic circuit

components

4 Program selection 13 Introduction to sensors

5 Repetition 14 Introduction to op-amps, diodes

and transistors

6 Functions 15 The SPI interface

7 Arrays 16 Introduction to A/D converters

8 Input / output formatting 17 The I2C interface

9 File input / output 18 Introduction to mux/demux chips

COURSE STRUCTURE AND FINAL PROJECTS

Each semester there are nine labs and two final projects.

About one-third of the labs are designated individual labs

and the other two-thirds are designed to be done in groups

of two. While some of the labs can be finished in three

hours, many are to be completed outside of regular lab time,

and students carry their micro SD cards to and from the lab

for continuity. A summary of the lab goals is given in Table

II.

The group project is designed for groups of 3 to 4

students. Groups are assigned after about 1/3 of the semester

and have various preparatory tasks to perform in the middle

third of the semester before the project begins in earnest the

final third of the semester. The final project involves an

autonomous vehicle using sensors to navigate a simple maze

from start to finish, and then a return to the start of the

course without using sensors. For the first three offerings of

the course, we used a modified RC tank as the vehicle for

the project (see Fig. 1.)

The final individual project has been to detect and

interpret a Morse code signal from an LED. A test code

randomly selects up to four sentences to transmit. The

student must build the hardware to detect the LED output

and write the code to translate the code.

RESEARCH METHODOLOGY

Course evaluation has been conducted by a research team

which operates separately from but advises the instructional

team about course improvements. Overall sentiments and

experiences are fed back in regular meetings. The mixed

research methods include student surveys, classroom

observation, and student interviews

TABLE II

THE PRINCIPLE LAB GOALS FOR THE NOVEL C PROGRAMMING CLASS

Lab Content/Goals

1 Assemble RPi Kit and write simple code to output message

2 Generate a code that allows you to type in a sentence and

then have an LED blink the sentence in Morse code

3 Write a code that will turns lights (LEDs) on when lights are

off and keep track of where (e.g. in a house) the lights are on

4 Learn to use the MCP3008 A/D converter. Write codes to (a)

get data from analog temperature sensors, (b) calibrate an IR

distance sensor, and (3) use a calibrated IR distance sensor to

measure distances to objects.

5 Generate two codes for a 3-axis analog accelerometer. The

first code is used to calibrate the sensor. The second code is
to measure and record accelerometer data with a calibrated

sensor and attempt to discern velocity and distance.

6 Generate two codes for a 3-axis digital magnetic sensor. The

first code is used to null and calibrate the sensor. The second

code is to measure and record magnetic field data with a

calibrated sensor.

7 Generate a code that interprets the data from an acoustic

distance sensor to estimate distance to objects and to identify
and ignore outliers in the data.

8 Generate a code that utilizes a servo motor and a magnetic

sensor to track a moving permanent magnet

9 Write a code to use two digital magnetic sensors and a

mux/demux chip to make a magnetic gradiometer. Write a
code to calibrate this device.

During a pilot offering of the course, we conducted

semi-structured interviews with students in both the

traditional and novel course offerings. Interview questions

addressed student perceptions of a few key areas: group

work versus individual work, skills needed for

programming, and identity/belief/efficacy related to

programming. Our analysis of these interview transcripts

helped formulate a survey instrument which highlighted

some of the key cognitive, affective, and experiential

differences emerging from the traditional and novel course

student populations.

FIGURE 1

A TYPICAL HARDWARE PRODUCT FOR THE FINAL GROUP PROJECT

In each of the three terms that the course has been

offered, we administered surveys to compare student

Session T1D

First Year Engineering Experience (FYEE) Conference July 31 – August 2, 2016, Columbus, OH

 T1D-3

responses in the novel and traditional courses. Students

were surveyed at the beginning of the semester, at the end of

the semester, and in the subsequent semester after taking the

class.

RESEARCH STUDY RESULTS AND DISCUSSION

Sample survey results are shown in Table III. A score of 1

means complete disagreement, a 4 means neutral, and a 7

signifies complete agreement.

TABLE III

SURVEY RESULTS FROM THE NOVEL COURSE FOR THE

IDENTITY/BELIEF EFFICACY SECTION. (* INDICATES

STATISTICALLY SIGNIFICANT DIFFERENCES.)

Survey question: Mean Standard
Deviation

PRE- I feel like I fit in as an electrical engineer. 5.6* 1.1

POST- I feel like I fit in as an electrical engineer. 6.4* 0.5

PRE- Programming is not “real engineering” 2.5 1.3

POST- Programming is not “real engineering” 2.1 1.2

PRE- I want to take more programming classes

beyond this class, even if they weren’t required.
5.6 1.5

POST- I want to take more programming classes
beyond this class, even if they aren’t required.

5.4 1.4

PRE- I’m excited about the electrical engineering

major.
6.0 1.4

POST- I’m excited about the electrical engineering

major.
6.5 0.5

PRE- Coming into this class, I feel confident that I
can learn coding.

6.1 1.1

POST- Going into <my next class>, I feel confident

that I can learn coding.
6.5 0.8

The following statements summarize our survey results

from Fall 2014 and Fall 2015 course cohorts.

There were gains in self-efficacy and identity measures

for novel course offering pre- to post-, with statistically

significant (α = 0.05) gains in matched samples t-test on the

statement “I feel like I fit in as an electrical engineer.” This

tentatively contrasts with initial data from the 2015 cohort

that the first semester of the traditional programming course

can decrease average scores on identity and self-efficacy

measures.

The novel course offering produces a higher

appreciation for, and enjoyment of, group work than the

traditional course, and a statistically significant gain in

terms of recognizing its importance in the students’ future

professional programming activities (Independent samples t-

test, α = 0.05) .

Upon reflection, in a lecture-based programming course

the subsequent term, students from the two course offerings

were asked to rank their first term course (traditional or

novel) or the subsequent course (same traditional course) on

a few key dimensions. Students from the novel course rated

it as more collaborative, less competitive, more like real

world engineering, and having a stronger feeling of

community than their current traditional programming

classes. The measures of collaborative and real-world

engineering were statistically significant on an independent

samples t-test (α = 0.05) when compared with traditional

course students.

Perhaps this final contrast (that students identify the

novel course as more like “real world engineering”) is the

most promising finding. Even in spite of work which is

difficult and taxing, a student who desires to be an

engineering major may find some level of comfort in

believing their effort is put towards an authentic engineering

challenge, as opposed to arbitrary and difficult tasks

disconnected from their intended professional practice.

SUMMARY AND FUTURE WORK

Our novel application-based introductory C course has had a

total of about sixty students over three semesters, limited by

resources. Our retention rate has been about 95%, with one

student failing, one student leaving because he decided his

previous programming instruction made this course

unnecessary, and a third student leaving early in the

semester. All other students successfully completed the

course.

We expect to offer this course indefinitely in the future

in parallel to the traditional course as an alternative choice

for incoming freshman who would prefer a more

application-driven course. The course will be continuously

updated and improved. For example, in Fall 2016 the RPi 3

(with faster processing and integrated Wi-Fi) will be used in

the course, tanks will be replaced with a robot car chassis,

and an off-the-shelf motor shield will replace the custom

PCB interface.

ACKNOWLEDGMENT

This work is supported by the National Science Foundation

under grant DUE- 1245745.

REFERENCES

[1] Dally, J. W., and G. M. Zhang, “A Freshman Engineering Design

Course,” Journal of Engineering Education, pp. 83-91, April 1993.

[2] Meade, J., “Change is in the Wind”, ASEE PRISM, 2, May 1993, pp.

20-24.

[3] Parker, J., D. Cordes, and J. Richardson, “Engineering design in the
freshman year at the University of Alabama-Foundation Coalition

program,” Frontiers in Education Conference, 1995. Proceedings.

1995 (Atlanta, GA), pp. 4d2.5 - 4d2.8 vol.2

[4] Prince, M. (2004). “Does Active Learning Work? A Review of the

Research.” Journal of Engineering Education, 93(3), 223–231.

http://doi.org/10.1002/j.2168-9830.2004.tb00809.x

AUTHOR INFORMATION

W. Lawson Professor, University of Maryland, College

Park, lawson@umd.edu

S. Secules Doctoral Candidate, University of Maryland,

College Park, secules@umd.edu

S. Bhattacharyya Professor, University of Maryland,

College Park, ssb@umd.edu

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Cordes,%20D..QT.&searchWithin=p_Author_Ids:37390674300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Richardson,%20J..QT.&searchWithin=p_Author_Ids:37365428800&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3500
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3500

